
J .  Fluid Mech. (1991), vol. 231, p p .  35-50 
Printed in Great Britain 

35 

Inviscid spatial stability of a three-dimensional 
compressible mixing layer 

By C.  E. GROSCH' AND T. L. JACKSON2 
Department of Oceanography and Department of Computer Science, 

Old Dominion University, Norfolk, VA 23529, USA 
Department of Mathematics and Statistics, Old Dominion University, 

Norfolk, VA 23529, USA 

(Received 17 July 1990 and in revised form 28 February 1991) 

We present the results of a study of the inviscid spatial stability of a parallel three- 
dimensional compressible mixing layer. The parameters of this study are the Mach 
number of the fast stream, the ratio of the speed of the slow stream to that of the fast 
stream, the ratio of the temperature of the slow stream to that of the fast stream, the 
direction of the crossflow in the fast stream, the frequency, and the direction of 
propagation of the disturbance wave. Stability characteristics of the flow as a 
function of these parameters are given. Certain theoretical results are presented 
which show the interrelations between these parameters and their effects on the 
stability characteristics. In particular, the three-dimensional stability problem for a 
three-dimensional mixing layer at Mach zero can be transformed to a two- 
dimensional stability problem for an equivalent two-dimensional mean flow. There 
exists a one-parameter family of curves such that for any given direction of mean 
flow and of wave propagation one can apply this transformation and obtain the 
growth rate from the universal curves. For supersonic convective Mach numbers, 
certain combinations of crossflow angle and propagation angle of the disturbance can 
increase the growth rates by a factor of about two, and thus enhance mixing. 

1. Introduction 
In recent years there has been renewed interest in understanding the stability 

characteristics of compressible mixing layers, due in part to the projected use of the 
scramjet engine for the propulsion of hypersonic aircraft. The study of the stability 
of these flows is particularly important because experimental and computational 
results show an increase in the flow stability at  high Mach numbers. One effect of this 
is that the mixing between the fuel and oxidizer may decrease as the Mach number 
increases, resulting in partial burning and a loss in combustion efficiency. Because of 
this gain in stability, natural transition may occur at downstream distances which 
are larger than practical combustor lengths. Therefore, it is desirable to examine 
techniques which may enhance mixing. Knowledge of these characteristics may 
allow one, in principle, to control the downstream evolution of such flows. Further 
discussion of these issues and selected background for this problem were given in a 
recent paper by Jackson & Grosch (1989, hereinafter referred to as Part I). 

All previous work on the stability of the compressible mixing layer are for two- 
dimensional mean flows. This is in contrast to the situation for boundary layers in 
which the effects of the crossflow on the stability have been studied and shown to be 
important (Mack 1984) in that it led to the appearance of standing wave instability 
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modes. There is no reason to believe that the effects of crossflow will not play an 
equally important role in determining stability characteristics of the compressible 
mixing layer. It is hoped that the inclusion of crossflow will enhance mixing, 
especially at supersonic speeds. 

I n  Part I we presented comprehensive stability characteristics for a two- 
dimensional compressible mixing layer as a function of the parameters: the Mach 
number of the moving stream, the ratio of the temperature of the stationary stream 
to that of the moving stream, the frequency, and the direction of propagation of the 
disturbance wave. In a related study we examined the stability of a compressible 
mixing layer with an embedded flame sheet (Jackson & Grosch 1990a). The effects 
of thermodynamics of the mean flow on the flow stability have also been studied 
(Jackson & Grosch 1991). Finally we have also presented results relating to the 
transition from convective to absolute instability and a rigorous derivation of a 
convective Mach number for the two-dimensional compressible mixing layer 
(Jackson & Grosch 1990b). 

I n  this paper we will examine the inviscid stability of a three-dimensional 
compressible mixing layer, the interfacial region between a fast moving gas a t  + co 
and a slower moving gas a t  - co. In  $2 we give the basic equations governing the 
three-dimensional mean flow. In $3 we formulate the stability problem, together 
with the boundary conditions and the numerical method of solution. Some general 
theoretical results are presented in $4. Section 5 contains a presentation of our 
numerical results and conclusions are given in $6. 

2. Mean flow 
We consider a three-dimensional compressible mixing layer, with zero pressure 

gradient, which separates two streams of different speeds and temperatures. We 
assume that the mean flow is governed by the three-dimensional compressible 
boundary-layer equations. We let (U,  V ,  W )  be the velocity components in the (2, y, 
z )  directions, respectively, p the density, and T the temperature of this mean flow. 
All of the variables are non-dimensionalized using the magnitudes of the free-stream 
values at y = +a. 

The mean flow equations are first transformed into the incompressible form by 
means of the Howarth-Dorodnitzyn transformation 

Y = [pdy, 9 = pV+U pxdy, 1 
yielding pT = 1, 

ux+ vy = 0, 

UT,+pTy = -Ty +(y-1)2M2pp(VY+Wy), t: )y 

where p is the coefficient of viscosity assumed to be only a function of temperature, 
(T the Prandtl number assumed to  be constant, y the ratio of specific heats, a n d M  
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the Mach number defined as the ratio of the speed of the fast moving stream to the 
speed of sound. Next we seek solutions in terms of the similarity variable 

q = Y/(2X+) (3) 

u =.f ' (q) ,  v = (rf'-f )/xi, W = d q ) ,  T = T(11). (4) 
of the form 

Substituting (4) into (2) yields the equations 

($g')+2fB. = 0, ( 5 b )  

( 5 4  

Since the velocity components have been normalized by the speed of the fast stream, 
the appropriate boundary conditions are 

--T' +2fT'+(y-l)"(f'')2+(9')2] P = 0. 
(,"T ) 

U(0O) =f'(0O) = cosq5, U(-0O) = f ' ( - C O )  = pu, (6a) 

W(m)=g(co)=sin$, W(-m)=g( -co )=O,  (6b) 

T(co) = 1, T( - 00)  = PT. (64  

Note that the fast stream is moving at  an angle q5 with respect to the x-axis, with 
0" < q5 < 90". If q5 = 0" there is no crossflow. If q5 = 90" the flow at + 00 is along the 
z-axis and at - 00 is along the x-axis. The parameter pu lies in the range (0, cosq5). 
If PT is less than 1, the slow stream is relatively cold compared to the fast stream, 
and if BT is greater than 1 it is relatively hot. 

Since the equation ( 5 b )  for g is linear, the solution is 

Note that if pu = 0, then g is proportional to U ,  and by an appropriate rotation of 
the axes, the mean flow can be reduced to a two-dimensional one, i.e. the angle q5 can 
be scaled out of the problem. Thus we see that the parameter pu plays an equivalent 
role to that of the pressure gradient parameter in a three-dimensional boundary- 
layer flow (Mack 1984). 

The equations (5a, c) have a similarity solution. However, as discussed in Jackson 
& Grosch (1991), the qualitative stability characteristics are independent of the 
detailed shape of the mean profile. For this reason we assume here that 

U = &cos q5+pu + (cos q5 -pu) tanh q ) ,  

W = isin q5( 1 + tanh q ) ,  

(8) 

(9) and thus from (7) 

which approximates the similarity profiles and can be handled analytically. For 
Chapman's linear viscosity law and unit Prandtl number, the temperature is given 
by 

T = 1-(l-/YT) cosq5-u +l-LP-V]. (10) 
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3. Stability problem 
Following the formulation given in Jackson & Grosch (1989) and Lees & Lin 

(1946), the flow field is perturbed by introducing wave disturbances in the velocity, 
pressure, temperature and density with amplitudes which are functions of 7. For 
example, the pressure perturbation is 

(11) p = ~ ( T , I )  exp [i(iiz+pz-wt)l, 

with n the amplitude, ii and p the wavenumbers in the downstream (x) and cross- 
stream ( z )  directions, respectively, and w the frequency. Substituting the expression 
(11) for the pressure perturbation and similar expressions for the other flow 
quantities into the inviscid compressible equations yields the ordinary differential 
equations for the perturbation amplitudes. It is straightforward to derive a single 
equation governing 17, given by 

where primes indicate differentiation with respect to the similarity variable 7. 

disturbances. To this end let 

with B the angle of propagation of the disturbance wave with respect to the x-axis, 
and - 90' < B < 90". Applying this transformation to (12) yields 

It is convenient to transform (12) to a form analogous to that for two-dimensional 

- 
ii = acosB, p = asin8, (rj) 

2(U' cos B+ W'sin 0 )  
U cos B + W sin 8- c 

17"- nl - Ta2[T-M2( U cos B + Wsin B - c ) ~ ]  17 = 0 ,  (14) 

where c = w / a .  (15) 

If one considers spatial stability a is complex, with the real part of a being the 
wavenumber in the propagation direction and the imaginary part of a indicating 
whether the disturbance is amplified, neutral, or damped depending on whether ai is 
negative, zero, or positive, assuming positive group velocity. The phase speed, cph, is 
given by w/a,. If ai is zero, c = cN is the phase speed of a neutral mode. For temporal 
stability, a is real and w is complex, and if the imaginary part of w is positive the 
disturbances are amplified. 

The boundary conditions for 17 are obtained by considering the limiting form of 
(14) as 7 + f CO. The solutions to (14) are of the form 

(16) 
where 

We define c* to be the values of the phase speed for which 52: vanishes. Thus 

n-+ exp ( f Q, 71, 

52: = a2[1-@(cos(~-8)-C)2], Q! = a2pT[PT-M2(pUCOSe-c)2]. (17) 

Note that c, is the phase speed of a sonic disturbance in the fast stream and c- is the 
phase speed of a sonic disturbance in the slow stream. At 

c *  are equal. 



Stability of a three-dimensional compressible mixing layer 39 

2 

C, Supersonic-Supersonic 

I I I I I I I I I  

M 
0 10 

FIGURE 1.  Plots of the sonic speeds c* versus Mach number for B, = 0.5. 

As discussed in Part I for a two-dimensional mean flow, the nature of the 
disturbances and the appropriate boundary conditions can now be illustrated by 
reference to figure 1, where we plot ck versus M for a typical value of BT. These curves 
divide the (c,, M )  plane into four regions, where c, is the real part of c. If a disturbance 
exists with a M and c, in region 1, then 52; and s22 are both positive, and the 
disturbance is subsonic a t  both boundaries, and we classify it as a subsonic mode. In 
region 3, both s2: and SZZ are negative and hence the disturbance is supersonic a t  both 
boundaries, and is classified as a supersonic-supersonic mode. In region 2, s2: is 
positive and 01 is negative, and the disturbance is subsonic at + co and supersonic 
at  - 00, and we classify it as a fast mode. Finally, in region 4, G?: is negative and Ql 
is positive so that the disturbance is supersonic at + co and subsonic at  - 00, and we 
classify it as a slow mode. 

The appropriate boundary conditions for either damped or outgoing waves in the 
fast and slow streams are, respectively, 

n+exp(-Q+T) if c, > c+, n+exp[-ir](-~:)i] if c, < c+, (20a) 
17+exp(Q-r]) if c, < c-, n+exp[-ir](-s22)~] if c, > c-. (20b)  

To solve the stability equation (14), we first transform it to a Riccati equation by 
setting 

G = 17'/(aTZ7), 

and then solve this new equation by the numerical scheme described in Part I, 
together with appropriate boundary conditions found from (20) and (21). 

4. Theoretical results 

flow. 
4.1. Bounds on growth rates and phase speeds 

Rayleigh and Howard derived a number of theorems which provide bounds on the 
phase speed and/or growth rates of temporally growing disturbances in unstable, 
inviscid, incompressible shear flows (see Drazin & Reid 1984 for a comprehensive 
review). Chimonas (1970) extended the Rayleigh and Howard results to include 
compressibility. These results seem not to be well known, perhaps because Chimonas 
derived them in the context of meteorological problems. In a related study, 
Djordjevic & Redekopp (1988) derived similar results for a two-dimensional non- 
homentropic compressible flow. 

In this section we present some theoretical results for a three-dimensional mean 
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We have extended Chimonas’ results to include crossflow. These results only apply 
to temporally unstable flows. I n  addition, these results apply to subsonic or 
supersonic flows in a channel with boundaries a t  fH .  They also apply to subsonic 
flows in an infinite domain for which the disturbances decay at 00. Following 
Chimonas’ derivation, it is easy to show for temporal disturbances: 

(a) that (Ucos 8 + W sin 8 - c,) must change sign somewhere in the domain, i.e. that 

c ,~[ (Ucos8+Wsin~) , ,~ ,  (Ucos8+Wsin8),,,] = [~,cos6,cos(q5-8)], (22) 

where c, is the phase speed of the temporally growing wave ; 
(b)  that c,, ci lie within the semicircle 

[c,-g(p, cos e+ cos (4 -e))y+ c; G [g(cos (q5- e)  -pu cos e)y ; (23 1 
( c )  and that the growth rate for the unstable modes satisfies 

(U‘ cos 8 + W’ sin O),,, 
O < W , G  

2Tmin 
7 

when the variables are written in terms of the similarity variable 7, with 

Tmin = min (1, PT). (25) 

For the mean flow given by (8) and (9), the upper bound becomes 

Equation (22) extends Chimonas’ result to include crossflow and shows that the 
phase speed of the unstable modes must lie in the range of the speed of the 
unperturbed free stream. Note that it is possible for these bounds to be equal. If the 
upper and lower bounds interchange, then the nominally slow stream now becomes 
the fast stream and this new problem can be transformed back into an equivalent 
problem. Equation (23) is exactly Chimonas’ compressible semicircle theorem with 
crossflow. We see that it is possible for the radius of the semicircle to vanish, which 
then corresponds to a neutral mode. Equation (24) is Chimonas’ upper bound with 
crossflow on the growth rate of the most unstable mode in a compressible flow. We 
see from (26) that the upper bound on the growth rate is proportional to  the radius 
of the semicircle of (23), and both can vanish. These bounds may not be the best 
possible because they are independent of both the Mach number and the temperature 
distribution. 

4.2. Convective Mach number 
I n  a previous paper (Jackson & Grosch 1990b) we showed that for either a temporally 
or spatially unstable flow, a convective Mach number can be defined for a two- 
dimensional multi-species gas as 

where M is the Mach number of the fast stream, M ,  is the Mach number a t  which the 
sonic speeds of the two streams are equal, pp and /3,, are the ratios of density and 
specific heats, respectively, of the slow stream to that of the fast stream. In that 
paper we compared this definition of the convective Mach number to that proposed 
by others and to published experimental data. This definition of the convective Mach 
number with crossflow is bassd on the free-stream Mach number in the laboratory 
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frame and is independent of the speed of any large-scale structures. We also showed 
that M = M ,  (M, = 1) is the largest Mach number for which any subsonic 
disturbances can exist. Finally, it was found that the maximum growth rates 
decreased as M ,  approaches 1, while they level off for M, > 1. 

It is straightforward to generalize the above concept to a three-dimensional mean 
flow. For a single-species gas, using the definition of M, from (19), we find 

It is clear that (28) reduces to (27) if q5 = 0' and P, = 1. If one is considering temporal 
instability, it can be seen that Me is proportional to the radius of the semicircle (23) 
and also to the upper bound on the temporal growth rate (26). For a given value of 
M we can reduce M, by decreasing the term in the square brackets in (28). However, 
trying to reduce M, by doing this also reduces the radius of the semicircle and reduces 
the upper bound on the temporal growth rate. If the term in the square brackets in 
(28) is zero, the projection of the mean flow onto the direction of propagation is a 
constant, independent of 7. Thus there is no effective shear, and thus no interaction 
between the mean flow and the disturbances. 

4.3. Generalized injexion point 
Lees & Lin (1946) gave a necessary and sufficient condition for the existence of a 
neutral mode in region 1 of figure 1 for a two-dimensional mean flow. The 
corresponding result with crossflow is the condition 

S(7) = - ] = o .  

The real roots of S are the generalized inflexion points. Let vC be such a root and 
define 

F = U(7,) cos 0 + W(7,) sin 8. 

If F lies in region 1 then, provided a =k 0, c" = cN is the phase speed of a neutral mode. 
The corresponding neutral wavenumber, aN, must be determined numerically. The 
eigenfunction is called a subsonic neutral mode. If F lies in regions 2, 3, or 4, then it 
does not correspond to the phase speed of a neutral mode. 

The function S(7)  is a cubic when U,  W ,  and Tare given by @-(lo). Explicitly, (29) 

(31) 
reduces to 

(30) 

(cos ($ - 0 )  -bu cos 0)  ( Z 3  - a2 + b )  = 0, 

with 

where Z = tanhr], q2 = 1 -2Puc0s$+/?~.  (33% b)  
Equation (31) has either one or three real roots with at least two of the three real 
roots equal if the discriminant is zero. If we define M, by 

then there is one real root for M < M, and three real roots for M 2 M,. Note that M,  
increases as q decreases. In  particular, as M + 0, only one real root exists and is given 
bv 
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FIQURE 2. Plots of the real roots of S as a function of the Mach number for p, = 4, 8, = 0.25, 
q5 = loo, and (a) e = oo, ( b )  0 = -45", (c) 0 = 45", ( d )  0 = -60", (e) 0 = 60°, ( f )  B = -75", (9) 8 = 75". 
Dashed lines show the sonic curves c * .  

with corresponding phase speed 

Also, as M +  00, there are three real roots giving 

- 
Figure 2 is a plot of the real roots of S, c", from (31) as a function of the Mach 

number and for PT =$, with Pu = 0.25, 9 = lo", and various values of the 
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FIQURE 3. Plots of the real roots of S as a function of the Mach number for BT = 4, B, = 0.25, (a) 
9 = Oo and 8 = +30", - ( b )  $ = 20" and 8 = -30°, (c) $ = 20' and 8 = 30°, (d )  $ = 40' and 8 = -30°, 
(e) 9 = 40' and 0 = 30". The sonic curves are plotted with dashes. 

propagation angle 8. The sonic curves cTt are also pl.>tted with dashes. It should be 
remembered that it is only when c" lies in region 1 that it  is the phase speed of a 
neutral mode. Figure 2 shows that the real zeros of S yield a monotonic curve and 
a 'bubble'. When PT < 1, the monotonic curve decreases as the Mach number 
increases and moves from region 1 into region 4 and the 'bubble ' lies above it. When 
PT > 1, the monotonic curve increases as the Mach number increases and moves from 
region 1 into region 2 and the 'bubble' lies below it. When PT = 1, the curve 
degenerates to a strFight line and intersects the ' bubble '. Thus BT = 1 is a transition 
value, denoted by PT. This unique value plays a critical role in the behaviour of the 
solutions of the stability problem (Jackson & Grosch 1991). As 8 is either increased 
or decreased from 0'' the monotonic curves and the 'bubble' y e  shifted towards 
smaller values of 5. It' can be shown that the transition value PT is independent of 
angle, although the corresponding value of c" is not. For any PT, if the mode is two- 
dimensional (8 = 0') there is only one zero of S in region 1. However, the sonic speeds 
c* are functions of the angle of propagation. As 8 increases or decreases from 0' the 
sonic curves shift towards higher Mach number. 

To show the effect of direction of crossflow on the generalized inflexion points, we 
plot in figure 3 the real roots of S, C, from (31) as a function of the Mach number and 
for PT = 3, PU = 0.25, 8 = &30', and for 4 = O', 20°, 40'. Again the sonic curves are 
plotted with dashes. For a disturbance propagating at  a fixed angle of 8 = 30°, 
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increasing g5 results in a small increase in the phase speed in region 1, while M ,  
decreases slightly. On the other hand, if 0 = -30" increasing q5 reduces the phase 
speed in region 1 and greatly increases the value of M,. Therefore, the major effect 
on the phase speeds and M ,  is observed when the disturbances are propagating in a 
direction opposite to that of the crossflow. 

From the results shown above, one can conclude that for any value of PT and g5, 
there will always be some angle of propagation for which all three zeros of S lie in 
region 1. Thus, the significance of the three real zeros of S only becomes apparent a t  
large angles of propagation. 

Finally, from (31) we see that another possible zero of S is given by the condition, 
cos (g5-O)-Pu case= 0. However this condition implies that, for neutral dis- 
turbances, the radius of the semicircle (23), the upper bound on the temporal growth 
rate (26), and the convective Mach number (28) all vanish. This then corresponds to  
a neutral mode, with the projection of the mean flow onto the direction of 
propagation a constant. 

5. Numerical results 
In  all of our calculations we have taken y = 1.4 and 0 < M < 10. 

5.1. M = 0 

Zero Mach number is a special case in that certain scalings are possible, because the 
viscous term in the temperature profile is absent. For zero Mach number, (14) reduces 
to 

2(U' cos O f  Wsin 8)  
U cos 0 + Wsin e-c  

ly- n.-a2!Pn=o, 

with T given by (5c)  or (10) with M = 0. Defining 

C 
c* = a* = a, 

pu cos e 
pG = c o s ( g 5 4 ) '  cos (g5 - e)  

yields an equivalent disturbance equation 

where 

and 
1-u* 

T* = l-( l-PT)- 
l-P*U' 

(39) 

for Chapman's viscosity law and unit Prandtl number, or an equivalent expression 
for the general case. With this scaling (40) is identical to  (38) with g5 = 8 = O", and 
we see that the three-dimensional problem can be transformed to  an equivalent two- 
dimensional problem. This is an extension of Squire's theorem to include a three- 
dimensional mean flow. 

In  order to illustrate the significance of the transformation (39), we show in figure 
4 a plot of the maximum growth rate for g5 = 8 = 0" and PT = +, 1, 2 as a function 
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1 .o 0 B" 
FIGURE 4. Plot of the maximum growth rate versus BLI for M = 0, $ = 0 = Oo, and (a) /IT = 4, 

(b)  B, = 1, (4 B, = 2. 

of pu. The graph for PT = 1 is equivalent to that of Monkewitz & Huerre (1982). We 
note that as q5 and 8 are varied, the only result is that the curves of figure 4 are shifted 
to the right or to the left. In particular, if q5 = 0" then = Pu for any 8 and the 
growth rate at Mach zero is that given in figure 4. Next, if # is not zero but fixed, 
there are three cases: 

(i) if i3 = !j$, then B: = Pu and again the growth rate is that of figure 4; 
(ii) if 0 > $q5, then /3$ < Pu and is shifted towards zero as 8 increases, and therefore 

the maximum growth rate is increased ; 
(iii) if 0 < $4, then B: > Bu and is shifted towards 1 as 0 decreases, and therefore 

the maximum growth rate is decreased. 
Thus for a given BT and BU, one can predict how a variation in q5 and 0 will affect 

the maximum growth rate at  zero Mach number. This also has significance for the 
maximum growth rates for M > 0 as will be shown in $5.3. 

Finally, based on our numerical results, we find that for M = 0, 

5.2. Absolutelconvective instabilities 

A flow is said to be absolutely unstable if the response to an impulse in space and time 
is unbounded everywhere in space for large time. A flow is said to be convectively 
unstable if the response decays to zero everywhere in space for large enough time. In 
this latter case the response to the impulse is a wave packet propagating downstream 
from the source with the waves forming the packet having growing amplitudes. 
Recently, Pavithran & Redekopp (1989) and Jackson & Grosch (1990 b )  have studied 
the transition from convective to absolute instability in a compressible, subsonic, 
two-dimensional mixing layer. At  zero Mach number and BT = 1, the transition 
value of Pu is -0.136, corresponding to backflow. For BU greater than this value the 
flow is convectively unstable, while for values less than this it is absolutely unstable. 
An increase in PT from 1 causes the transition value of pu to become more negative, 
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FIGURE 5. Plots of the neutral phase speeds versus Mach number for /3, = $, /3, = 0.25, $ = loo, 
and (a) 8 = 4 5 O ,  ( b )  B = Oo, ( c )  8 = - 4 5 O .  The sonic curves c ,  are shown as dashed curves. 

while decreasing PT from 1 has the opposite effect (Jackson & Grosch, 1990b), but 
even for small PT the transition value is still negative. For any value of PT, increasing 
the Mach number causes the transition value of pu to become more negative. Thus, 
the two-dimensional mixing layer is convectively unstable. 

We have extended these results to include crossflow. In particular, at zero Mach 
number we can use the transformations (39) to determine the transition value of BV 
for any set of values of qh and 8 from the Pu of the equivalent two-dimensional mean 
flow. Because these two values of pu are related by cosine factors, the signs never 
change. Hence, the compressible, subsonic, three-dimensional mixing layer is also 
convectively unstable. 

5.3. M > 0 
For Mach numbers greater than zero it is not possible to scale the mean flow to reduce 
it to an equivalent two-dimensional mean flow. In what follows we have taken PT = 
$ because cooling the gas of the slow stream results in an increase in the maximum 
growth rates of the disturbances. In addition we also take PV = 0.25. 

Results for the neutral modes are shown in figure 5 for qh = 10" and 8 = -45", 0", 
45". Figure 5 shows the variation of the phase speed cN as a function of the Mach 
number. Note that as 8 is decreased there is a substantial increase in the extent of 
region 1.  As in Part I, there is a single subsonic neutral wave in region 1 which crosses 
over the sonic curve at M,, the Mach number a t  which the phase speed equals that 
of a sonic wave, into region 4 and is transformed into a slow supersonic neutral mode. 
There is also another supersonic neutral mode which appears a t  M ,  in region 2 and 
is classified as a fast supersonic neutral mode. 

In  figures 6, 7,  and 8 we show the variation of maximum value of growth rate with 
Mach number for selected values of qh and 8. In  figure 6, q5 is taken to be 10' and 
maximum growth rates are given for several values of 8. A decrease in 8 from 80" 
results in a decrease in the maximum value of the growth rate for low Mach numbers. 
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FIQURE 6. Plot of the maximum growth rates of the subsonic modes and their slow supersonic 
continuation and some fast supersonic modes versus Mach number for 8, = i,p, = 0.25, d = lo', 
and (a) 8 = 80°, ( b )  8 = 60°, (c) 8 = 45', (d )  8 = Oo, (e) 8 = -45'. 

0.25 r 

FIGURE 7. Plot of the maximum growth rates of the subsonic modes and their slow supersonic 
continuation versus Mach number for 8, = 4, p, = 0.25, 8 = O', and (a) r$ = O', ( b )  $ = 20°, 
(c) y3 = 40'. 

In particular the results a t  Mach zero are a consequence of the transformations given 
in $5.1. As 8 decreases towards and past &b, /3: shifts away from zero and therefore 
the maximum growth rate decreases. For all values of 8 the trend in the maximum 
growth rate with Mach number is similar. For the subsonic mode and its slow 
supersonic continuation the growth rates decrease by a factor of five to ten with 
Mach number and then level off. The growth rates of the fast supersonic modes, 
which appear at M,, increase slightly and then decrease with increasing Mach 
number. Since the growth rates of these modes are always considerably less than 
those of the others, we do not show them in figures 7 and 8. Note that the growth rate 
for 8 = 80" is always greater than the growth rates of the other cases. At Mach two, 
the growth rate of the 8 = 80" case is comparable to the growth rate of the 8 = 0" case 
at Mach zero. 

Figure 7 shows the growth rates for a complementary case ; 8 held fixed a t  0" and 
q5 = O', 20°, 40'. An increase in 9 results in a decrease in the growth rates a t  low Mach 
numbers. As in the previous case, an increase in Mach number causes first a decrease 
in the growth rate, followed by a levelling off for all angles. Note from the 
transformation (39), with two-dimensional disturbances (0 = 0") and zero Mach 
number, /3: = Pu/cosq5. Thus as q5 is increased from zero, /3F increases and hence the 
maximum growth rate decreases. This behaviour influences the growth rates a t  low 
subsonic Mach numbers. Therefore, to take advantage of the effects of crossflow, one 
must also have three-dimensional disturbances. 
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0 M 10 
FIQURE 8. Plot of the maximum growth rates of the subsonic modes and their slow supersonic 
continuation versus Mach number for j3, = 4, /3, = 0.25, and (a) $ = 30" and 0 = 30", ( b )  $ = 15" 
and 8 = 30°, (c) qi = 45" and 8 = 30°, (d )  $ = 0" and 8 = *30', (e) q5 = 15" and 8 = -30", (f) $ = 
30" and 8 = -30°, (9) qi = 45" and 8 = -30'. 
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FIQURE 9. Plot of the normalized maximum growth rate as a function of the convective Mach 
number for j3, = 4, j3, = 0.25, $ = lo', and (a)  8 = 80°, (a) 8 = 60', (c) 8 = 45", (d )  0 = O", 
(e) 8 = -45". 

The results in figure 8 are intended to  show the effect on the growth rate of modes 
propagating in the direction of the crossflow and counter to the crossflow. To do this 
we have chosen two values of propagation, 0 = f30" and four values of $. At zero 
Mach number the case of $ = tl = 30" has the maximum growth rate, while the case 
$ = 45O and 0 = -30" has the minimum. But a t  higher Mach numbers, say greater 
than Mach 2.5, the case with $ = 30" and 0 = -30" has the largest growth rate. All 
of the growth rates a t  Mach zero can be found using the transformation (39) and the 
results shown in figure 4. 

The effect on the growth rates of the scaling parameter M, defined in (28) can now 
be analysed. I n  order to show the variation of the maximum growth rates with M ,  
we define the normalized growth rate 

Figure 9 is a plot of the normalized growth rate R versus the convective Mach 
number M ,  of the data shown in figure 6. I n  all cases the normalized growth rate 
decreases by a factor of five to  ten as the convective Mach number increases from 
zero to one. For M, > 1,  corresponding to the slow supersonic continuation of the 
subsonic mode in region 1 into region 4 (see figure l ) ,  the normalized growth rates 
level off. In  addition, the fast supersonic modes in region 2 of figure 1 appear. Finally, 
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2 Mc 0 
FIQURE 10. Plot of the normalized maximum growth rate as a function of the convective Mach 
number for PT = i, /3" = 0.25, and (a) q5 = 30' and I9 = 30', ( b )  q5 = 15' and I9 = 30°, (c) q5 = 45' and 
0 = 30°, (d )  q5 = Oo and 8 = f30', (e) $ = 15' and 0 = -30', (f) $ = 30' and I9 = -30'. 

for M, > 1, the growth rate of the 8 = 80" case is substantially larger than the growth 
rates of the other cases. Figure 10 shows similar trends in the growth rates for the 
data shown in figure 7. 

7. Conclusions 
We have presented theoretical bounds on the phase speeds and growth rates for 

temporally growing disturbances in a three-dimensional compressible mixing layer. 
We also derived a convective Mach number appropriate for either temporal or spatial 
instabilities. For temporal instabilities, it was found that the convective Mach 
number is proportional to these bounds. In order to enhance mixing, it is generally 
desirable to decrease the convective Mach number so as to have higher growth rates. 
However, we have shown that decreasing the convective Mach number also decreases 
the bounds on the growth rates. 

For Mach zero we have shown that the three-dimensional stability problem for a 
three-dimensional mixing layer can be transformed to a two-dimensional stability 
problem for an equivalent two-dimensional mean flow. There exists a one-parameter 
family of curves, with /IT the parameter, of the maximum growth rate as a function 
of Pu. For any given direction of flow and of wave propagation one can apply the 
transformation and obtain the growth rate from the universal curves. In addition, we 
have shown that the subsonic three-dimensional mixing layer is convectively 
unstable. 

For spatial instability and convective Mach numbers greater than zero, maximum 
growth rates always decrease by a factor of five to ten as the convective Mach 
number approaches 1. The maximum growth rates level off for convective Mach 
numbers greater than 1. However, for a modest crossflow angle and large positive 
angle of propagation, it is possible to increase the growth rate beyond M ,  = 1 relative 
to the two-dimensional case. This effect is significant since growth rates can be 
increased by a factor of about two in the range of convective Mach numbers greater 
than 1.  However, this is not enough to increase the growth rates of these modes to 
those of the subsonic modes at Mach zero. We conclude that crossflow can increase 
the mixing and thus enhance combustion efficiency at supersonic convective Mach 
numbers. We suggest that a pressure gradient or streamwise vorticity may also 
contribute to a further destabilization of these modes. 

We wish to thank D. Bushnell for suggesting that we examine this problem. 
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